Category: BCI


Researchers take major step forward in Artificial Intelligence

By Hugo Angel,

The long-standing dream of using Artificial Intelligence (AI) to build an artificial brain has taken a significant step forward, as a team led by Professor Newton Howard from the University of Oxford has successfully prototyped a nanoscale, AI-powered, artificial brain in the form factor of a high-bandwidth neural implant.
Professor Newton Howard (pictured above and below) holding parts of the implant device
In collaboration with INTENT LTD, Qualcomm Corporation, Intel Corporation, Georgetown University and the Brain Sciences Foundation, Professor Howard’s Oxford Computational Neuroscience Lab in the Nuffield Department of Surgical Sciences has developed the proprietary algorithms and the optoelectronics required for the device. Rodents’ testing is on target to begin very soon.
This achievement caps over a decade of research by Professor Howard at MIT’s Synthetic Intelligence Lab and the University of Oxford, work that resulted in several issued US patents on the technologies and algorithms that power the device, 
  • the Fundamental Code Unit of the Brain (FCU)
  • the Brain Code (BC) and the Biological Co-Processor (BCP) 

are the latest advanced foundations for any eventual merger between biological intelligence and human intelligence. Ni2o (pronounced “Nitoo”) is the entity that Professor Howard licensed to further develop, market and promote these technologies.

The Biological Co-Processor is unique in that it uses advanced nanotechnology, optogenetics and deep machine learning to intelligently map internal events, such as neural spiking activity, to external physiological, linguistic and behavioral expression. The implant contains over a million carbon nanotubes, each of which is 10,000 times smaller than the width of a human hair. Carbon nanotubes provide a natural, high-bandwidth interface as they conduct heat, light and electricity instantaneously updating the neural laces. They adhere to neuronal constructs and even promote neural growth. Qualcomm team leader Rudy Beraha commented, ‘Although the prototype unit shown today is tethered to external power, a commercial Brain Co-Processor unit will be wireless and inductively powered, enabling it to be administered with a minimally-invasive procedures.
The device uses a combination of methods to write to the brain, including 
  • pulsed electricity
  • light and 
  • various molecules that simulate or inhibit the activation of specific neuronal groups
These can be targeted to stimulate a desired response, such as releasing chemicals in patients suffering from a neurological disorder or imbalance. The BCP is designed as a fully integrated system to use the brain’s own internal systems and chemistries to pattern and mimic healthy brain behavior, an approach that stands in stark contrast to the current state of the art, which is to simply apply mild electrocution to problematic regions of the brain. 
Therapeutic uses
The Biological Co-Processor promises to provide relief for millions of patients suffering from neurological, psychiatric and psychological disorders as well as degenerative diseases. Initial therapeutic uses will likely be for patients with traumatic brain injuries and neurodegenerative disorders, such as Alzheimer’s, as the BCP will strengthen the weak, shortening connections responsible for lost memories and skills. Once implanted, the device provides a closed-loop, self-learning platform able to both determine and administer the perfect balance of pharmaceutical, electroceutical, genomeceutical and optoceutical therapies.
Dr Richard Wirt, a Senior Fellow at Intel Corporation and Co-Founder of INTENT, the company’s partner of Ni2o bringing BCP to market, commented on the device, saying, ‘In the immediate timeframe, this device will have many benefits for researchers, as it could be used to replicate an entire brain image, synchronously mapping internal and external expressions of human response. Over the long term, the potential therapeutic benefits are unlimited.
The brain controls all organs and systems in the body, so the cure to nearly every disease resides there.- Professor Newton Howard
Rather than simply disrupting neural circuits, the machine learning systems within the BCP are designed to interpret these signals and intelligently read and write to the surrounding neurons. These capabilities could be used to reestablish any degenerative or trauma-induced damage and perhaps write these memories and skills to other, healthier areas of the brain. 
One day, these capabilities could also be used in healthy patients to radically augment human ability and proactively improve health. As Professor Howard points out: ‘The brain controls all organs and systems in the body, so the cure to nearly every disease resides there.‘ Speaking more broadly, Professor Howard sees the merging of man with machine as our inevitable destiny, claiming it to be ‘the next step on the blueprint that the author of it all built into our natural architecture.
With the resurgence of neuroscience and AI enhancing machine learning, there has been renewed interest in brain implants. This past March, Elon Musk and Bryan Johnson independently announced that they are focusing and investing in for the brain/computer interface domain. 
When asked about these new competitors, Professor Howard said he is happy to see all these new startups and established names getting into the field – he only wonders what took them so long, stating: ‘I would like to see us all working together, as we have already established a mathematical foundation and software framework to solve so many of the challenges they will be facing. We could all get there faster if we could work together – after all, the patient is the priority.
© 2017 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Headington, Oxford, OX3 9DU
ORIGINAL: NDS Oxford
2 June 2017 

Bridging the Bio-Electronic Divide

By Hugo Angel,

New effort aims for fully implantable devices able to connect with up to one million neurons
A new DARPA program aims to develop an implantable neural interface able to provide unprecedented signal resolution and data-transfer bandwidth between the human brain and the digital world. The interface would serve as a translator, converting between the electrochemical language used by neurons in the brain and the ones and zeros that constitute the language of information technology. The goal is to achieve this communications link in a biocompatible device no larger than one cubic centimeter in size, roughly the volume of two nickels stacked back to back.
The program, Neural Engineering System Design (NESD), stands to dramatically enhance research capabilities in neurotechnology and provide a foundation for new therapies.
“Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” said Phillip Alvelda, the NESD program manager. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.
Among the program’s potential applications are devices that could compensate for deficits in sight or hearing by feeding digital auditory or visual information into the brain at a resolution and experiential quality far higher than is possible with current technology.
Neural interfaces currently approved for human use squeeze a tremendous amount of information through just 100 channels, with each channel aggregating signals from tens of thousands of neurons at a time. The result is noisy and imprecise. In contrast, the NESD program aims to develop systems that can communicate clearly and individually with any of up to one million neurons in a given region of the brain.
Achieving the program’s ambitious goals and ensuring that the envisioned devices will have the potential to be practical outside of a research setting will require integrated breakthroughs across numerous disciplines including 
  • neuroscience, 
  • synthetic biology, 
  • low-power electronics, 
  • photonics, 
  • medical device packaging and manufacturing, systems engineering, and 
  • clinical testing.
In addition to the program’s hardware challenges, NESD researchers will be required to develop advanced mathematical and neuro-computation techniques to first transcode high-definition sensory information between electronic and cortical neuron representations and then compress and represent those data with minimal loss of fidelity and functionality.
To accelerate that integrative process, the NESD program aims to recruit a diverse roster of leading industry stakeholders willing to offer state-of-the-art prototyping and manufacturing services and intellectual property to NESD researchers on a pre-competitive basis. In later phases of the program, these partners could help transition the resulting technologies into research and commercial application spaces.
To familiarize potential participants with the technical objectives of NESD, DARPA will host a Proposers Day meeting that runs Tuesday and Wednesday, February 2-3, 2016, in Arlington, Va. The Special Notice announcing the Proposers Day meeting is available at https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-16-16/listing.html. More details about the Industry Group that will support NESD is available at https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-16-17/listing.html. A Broad Agency Announcement describing the specific capabilities sought will be forthcoming on www.fbo.gov.
NESD is part of a broader portfolio of programs within DARPA that support President Obama’s brain initiative. For more information about DARPA’s work in that domain, please visit:http://www.darpa.mil/program/our-research/darpa-and-the-brain-initiative.
ORIGINAL: DARPA

Scientists Just Invented the Neural Lace

By admin,

A 3D microscope image of the mesh merging with brain cells.

Images via Charles Lieber

In the Culture novels by Iain M. Banks, futuristic post-humans install devices on their brains called a neural lace.” A mesh that grows with your brain, it’s essentially a wireless brain-computer interface. But it’s also a way to program your neurons to release certain chemicals with a thought. And now, there’s a neural lace prototype in real life.

A group of chemists and engineers who work with nanotechnology published a paper this month in Nature Nanotechnology about an ultra-fine mesh that can merge into the brain to create what appears to be a seamless interface between machine and biological circuitry. Called “mesh electronics,” the device is so thin and supple that it can be injected with a needle — they’ve already tested it on mice, who survived the implantation and are thriving. The researchers describe their device as “syringe-injectable electronics,” and say it has a number of uses, including 

  • monitoring brain activity, 
  • delivering treatment for degenerative disorders like Parkinson’s, and 
  • even enhancing brain capabilities.

Writing about the paper in Smithsonian magazine, Devin Powell says a number of groups are investing in this research, including the military:

[Study researcher Charles Lieber’s] backers include Fidelity Biosciences, a venture capital firm interested in new ways to treat neurodegenerative disorders such as Parkinson’s disease. The military has also taken an interest, providing support through the U.S. Air Force’s Cyborgcell program, which focuses on small-scale electronics for the “performance enhancement” of cells.

For now, the mice with this electronic mesh are connected by a wire to computer — but in the future, this connection could become wireless. The most amazing part about the mesh is that the mouse brain cells grew around it, forming connections with the wires, essentially welcoming a mechanical component into a biochemical system.

A 3D microscope image of the mesh merging with brain cells

Lieber and his colleagues do hope to begin testing it on humans as soon as possible, though realistically that’s many years off. Still, this could be the beginning of the first true human internet, where brain-to-brain interfaces are possible via injectable electronics that pass your mental traffic through the cloud. What could go wrong?

[Read the scientific article in Nature Nanotechnology]

ORIGINAL: Gizmodo
Annalee Newitz
6/15/15

Contact the author at [email protected].
Public PGP key

A Brain-Computer Interface That Works Wirelessly

By admin,

A wireless transmitter could give paralyzed people a practical way to control TVs, computers, or wheelchairs with their thoughts.

Why It Matters

Electronic brain interfaces may give paralyzed people control over their environments. 

A wireless brain interface uses the head-worn transmitter, shown.

A few paralyzed patients could soon be using a wireless brain-computer interface able to stream their thought commands as quickly as a home Internet connection.

After more than a decade of engineering work, researchers at Brown University and a Utah company, Blackrock Microsystems, have commercialized a wireless device that can be attached to a person’s skull and transmit via radio thought commands collected from a brain implant. Blackrock says it will seek clearance for the system from the U.S. Food and Drug Administration, so that the mental remote control can be tested in volunteers, possibly as soon as this year.

The device was developed by a consortium, called BrainGate, which is based at Brown and was among the first to place implants in the brains of paralyzed people and show that electrical signals emitted by neurons inside the cortex could be recorded, then used to steer a wheelchair or direct a robotic arm (see “Implanting Hope”).

A major limit to these provocative experiments has been that patients can only use the prosthetic with the help of a crew of laboratory assistants. The brain signals are collected through a cable screwed into a port on their skull, then fed along wires to a bulky rack of signal processors. “Using this in the home setting is inconceivable or impractical when you are tethered to a bunch of electronics,” says Arto Nurmikko, the Brown professor of engineering who led the design and fabrication of the wireless system.

The new interface does away with much of that wiring by processing brain data inside a device about the size of an automobile gas cap. It is attached to the skull and wired to electrodes inside the brain. Inside the device is 

  • a processor to amplify the faint electrical spikes emitted by neurons
  • circuits to digitize the information, and 
  • a radio to beam it a distance of a few meters to a receiver. 

There, the information is available as a control signal; say to move a cursor across a computer screen.
The device transmits data out of the brain at rate of 48 megabits per second, about as fast as a residential Internet connection, says Nurmikko. It uses about 30 milliwatts of power—a fraction of what a smartphone uses—and is powered by a battery.

Scientists have prototyped wireless brain-computer interfaces before, and some simpler transmitters have been sold for animal research. “But there’s just no such thing as a device that has this many inputs and spits out megabits and megabits of data. It’s fundamentally a new kind of device,” says Cindy Shestek, an assistant professor of biomedical engineering at the University of Michigan.

Although the implant can transmit the equivalent of about 200 DVDs’ worth of data a day, that’s not much information compared to what the brain generates in executing even the simplest movement. Of the billions of neurons in the human cortex, scientists have never directly measured more than 200 or so simultaneously. “You and I are using our brains as petabyte machines,” says Nurmikko. “By that standard, 100 megabits per second is going to look very modest.

Blackrock has begun selling the wireless processor, which it calls “Cereplex-W” and costs about $15,000, to research labs that study primates. Tests in humans could happen quickly, says Florian Solzbacher, a University of Utah professor who is the owner and president of Blackrock. The Brown scientists have plans to try it on paralyzed patients, but haven’t yet done so.

Currently, a half dozen or so paralyzed people, including some in the late stages of ALS, are taking part in BrainGate trials using the older technology. In those studies, underway in Boston and California, the implant that makes contact with the brain is a small array of needle-like electrodes carved from silicon. Also sold by Blackrock, it is commonly called the Utah array. To establish a brain-machine interface, that array is pushed into the tissue of the cerebral motor cortex, where its tips record the firing patterns from 100 neurons or more at once.

Those tiny blasts of electricity, scientists have found, can be decoded into a fairly precise readout of what movement an animal, or a person, is intending. Decoding those signals has permitted hundreds of monkeys, as well as a growing number of paralyzed volunteers, to control a computer mouse, or manipulate objects with a robotic arm, sometimes with surprising dexterity (see “The Thought Experiment”).

But the BrainGate technology will never turn into actual medicine until it’s greatly simplified and made more reliable. The head-mounted wireless module is a step toward that goal. Eventually, scientists say, all the electronics will have to be implanted completely inside the body, with no wires reaching through the skin, since that can lead to infections. Last year, the Brown researchers reported testing a prototype of a fully implanted interface, with the electronics housed inside a titanium can that can be sealed under the scalp. That device is not yet commercialized.

If they could put it in under the skin, then everything you see in the videos could be done at home,” says Shestek, referring to films of patients using mental control to move robotic arms. “That wire going through the skin is the most dangerous part of the system.

ORIGINAL:
Tech Review

January 14, 2015

Building Mind-Controlled Gadgets Just Got Easier

By admin,

ORIGINAL: IEEE Spectrum
By Eliza Strickland
11 Aug 2014
A new brain-computer interface lets DIYers access their brain waves
Photo: Chip AudetteEngineer Chip Audette used the OpenBCI system to control a robot spider with his mind.
The guys who decided to make a mind-reading tool for the masses are not neuroscientists. In fact, they’re artists who met at Parsons the New School for Design, in New York City. In this day and age, you don’t have to be a neuroscientist to muck around with brain signals.
With Friday’s launch of an online store selling their brain-computer interface (BCI) gear, Joel Murphy and Conor Russomanno hope to unleash a wave of neurotech creativity. Their system enables DIYers to use brain waves to control anything they can hack—a video game, a robot, you name it. “It feels like there’s going to be a surge,” says Russomanno. “The floodgates are about to open.” And since their technology is open source, the creators hope hackers will also help improve the BCI itself.

Photo: OpenBCI The OpenBCI board takes in data from up to eight electrodes.

Their OpenBCI system makes sense of an electroencephalograph (EEG), signal, a general measure of electrical activity in the brain captured via electrodes on the scalp. The fundamental hardware component is a relatively new chip from Texas Instruments, which takes in analog data from up to eight electrodes and converts it to a digital signal. Russomanno and Murphy used the chip and an Arduino board to create OpenBCI, which essentially amplifies the brain signal and sends it via Bluetooth to a computer for processing. “The big issue is getting the data off the chip and making it accessible,” Murphy says. Once it’s accessible, Murphy expects makers to build things he hasn’t even imagined yet.
The project got its start in 2011, when Russomanno was a student in Murphy’s physical computing class at Parsons and told his professor he wanted to hack an EEG toy made by Mattel. The toy’s EEG-enabled headset supposedly registered the user’s concentrated attention (which in the game activated a fan that made a ball float upward). But the technology didn’t seem very reliable, and since it wasn’t open source, Russomanno couldn’t study the game’s method of collecting and analyzing the EEG data. He decided that an open-source alternative was necessary if he wanted to have any real fun.
Happily, Russomanno and his professor soon connected with engineer Chip Audette, of the New Hampshire R&D firm Creare, who already had a grant from the U.S. Defense Advanced Research Projects Agency (DARPA) to develop a low-cost, high-quality EEG system for “nontraditional users.” Once the team had cobbled together a prototype of their OpenBCI system, they decided to offer their gear to the world with a Kickstarter campaign, which ended in January and raised more than twice the goal of US $100,000.
Murphy and Russomanno soon found that production would be more difficult and take longer than expected (as is the case with so many Kickstarter projects), so they had to push back their shipping date by several months. Now, though, they’re in business—and Russomanno says that shipping a product is only the beginning. “We don’t just want to sell something; we want to teach people how to use it and also develop a community,” he says. OpenBCI wants to be an online portal where experimenters can swap tips and post research projects.
So once a person’s brain-wave data is streaming into a computer, what is to be done with it? OpenBCI will make some simple software available, but mostly Russomanno and Murphy plan to watch as inventors come up with new applications for BCIs.
Audette, the engineer from Creare, is already hacking robotic “battle spiders” that are typically steered by remote control. Audette used an OpenBCI prototype to identify three distinct brain-wave patterns that he can reproduce at will, and he sent those signals to a battle spider to command it to turn left or right or to walk straight ahead. “The first time you get something to move with your brain, the satisfaction is pretty amazing,” Audette says. “It’s like, ‘I am king of the world because I got this robot to move.’
In Los Angeles, a group is using another prototype to give a paralyzed graffiti artist the ability to practice his craft again. The artist, Tempt One, was diagnosed with Lou Gehrig’s disease in 2003 and gradually progressed to the nightmarish “locked in” state. By 2010 he couldn’t move or speak and lay inert in a hospital bed—but with unimpaired consciousness, intellect, and creativity trapped inside his skull. Now his supporters are developing a system called the BrainWriter: They’re using OpenBCI to record the artist’s brain waves and are devising ways to use those brain waves to control the computer cursor so Tempt can sketch his designs on the screen.
Another early collaborator thinks that OpenBCI will be useful in mainstream medicine. David Putrino, director of telemedicine and virtual rehabilitation at the Burke Rehabilitation Center, in White Plains, N.Y., says he’s comparing the open-source system to the $60,000 clinic-grade EEG devices he typically works with. He calls the OpenBCI system robust and solid, saying, “There’s no reason why it shouldn’t be producing good signal.
Putrino hopes to use OpenBCI to build a low-cost EEG system that patients can take home from the hospital, and he imagines a host of applications. Stroke patients, for example, could use it to determine when their brains are most receptive to physical therapy, and Parkinson’s patients could use it to find the optimal time to take their medications. “I’ve been playing around with these ideas for a decade,” Putrino says, “but they kept failing because the technology wasn’t quite there.” Now, he says, it’s time to start building.

Not Science Fiction: A Brain In A Box To Let People Live On After Death

By admin,

ORIGINAL: FastCoExist
Scientists believe it may be possible in the future for human brains to survive death in robotic bodies. but would we want to?
I recently had the unusual experience of seeing three renowned scientists discuss whether it’s possible to remove a human brain from a body, put it in a tank, and give it a robotic body. This wasn’t some bizarre late-night bar discussion: The conversation was a serious talk conducted on stage at a conference at New York’s Lincoln Center. The University of Southern California‘s Theodore Berger, Duke University‘s Mikhail Lebedev, and Alexander Kaplan of Moscow University, all believe it’s possible for the brain to survive body-death inside a cybernetic shell.
In their panel at the Global Future 2045 conference, the trio discussed a future that sounds like a combination of Eternal Sunshine of the Spotless Mind, the recent mouse inception, and Krang, the brain-in-a-box villain of Teenage Mutant Ninja Turtles. The talk, which took place in a mixture of Russian and English, focused on making it possible in our lifetime to conduct brain transplants, harvesting human parts from the body for cybernetic integration, and making self-aware brains comfortable in their new robot homes. It was just another Saturday afternoon, in other words.
Notably absent from the conversation was what the quality of life would be for human brains harvested into robotic bodies. Although all three researchers come from impeccable neurology backgrounds, the talk centered on mostly whether it would be possible to make the technology work. Whether it would be wise, or what the experience would be like for both patients and loved ones, wasn’t discussed as much.
The three researchers believe brain transplants are possible because the human brain is the last organ in the body to cease function after death. Because the death process includes a short window where the brain functions without support from other organs, Berger, Kaplan, and Lebedev all believe there is precedent to have the human brain functioning indefinitely in a non-human carrier–as long as the appropriate support system is there for the brain. They also stress the fact that nerve cells age slowly compared to other organs.
This brain-in-a-robot would be supported by biological blood substitutes (with “the necessary hormonal-biochemical and energetic substrate), multi-channel brain-computer interfaces with two-way information exchange, neural prostheses, artificially regrown human organs, and other biotech tools that we can’t even imagine. Because there is no precedent for the human brain surviving and functioning outside of a human body, degrees of consciousness, intelligence, comprehension, and a million other existential quandaries that would or wouldn’t exist in a robo-brain simply aren’t evaluated. The data points aren’t there for us to understand, even if it’s possible to transplant a human brain into a robot, what it’s like to be a human brain transplanted into a robot.
There are even interim holding facilities where living human brains could hypothetically be stored before transplantation.
While their roundtable discussion admittedly sounded like a master’s exercise in strange science, the kicker is that all three are engaged in preliminary efforts to make this happen. Last year, at the resolutely mainstream MIT Media Lab, I saw Dr. Berger speak about hacking the memories of rats. Berger’s lab at USC is actively working on prosthetic brain implants that both falsify memories and stimulate brain function in damaged neurons. The lab’s work recently received media attention when it successfully generated new memories in a rat that had its hippocampus chemically disabled. In literature, Berger emphasizes his technology’s potential for treating Alzheimer’s and dementia through the possibility of “building spare parts for the brain;” on-stage in New York, he said it could also lead in the future to full-on brain transplants.
This would work in tandem with Kaplan’s and Lebedev’s specialties. The two Russian scientists research brain-computer interfaces (BCIs)–plug-in interfaces which meld the human brain and nervous system to computer operating systems. While BCIs are most commonly found in toys that read brainwaves to detect stress or concentration, they have revolutionary potential to change the lives of stroke victims and the disabled.
When combined, brain prosthetics and brain-computer interfaces could lead to brain transplants decades from now. Would you want to spend decades or even a century living inside a robotic body at the mercy of a software interface to navigate the world? We’re just beginning to grasp the ethical, philosophical, and scientific implications. But with the right amount of funding, research, and cooperation, it’s entirely possible.

  Category: BCI, Psycology, Robotics
  Comments: Comments Off on Not Science Fiction: A Brain In A Box To Let People Live On After Death