Xnor.ai – Bringing Deep Learning AI to the Devices at the Edge of the Network

By Hugo Angel,

  Filed under: AI, Algorithms, Deep Learning, Image Recognition, Machine Learning
  Comments: None

 

Photo  – The Xnor.ai Team

 

Today we announced our funding of Xnor.ai. We are excited to be working with Ali Farhadi, Mohammad Rastegari and their team on this new company. We are also looking forward to working with Paul Allen’s team at the Allen Institute for AI and in particular our good friend and CEO of AI2, Dr. Oren Etzioni who is joining the board of Xnor.ai. Machine Learning and AI have been a key investment theme for us for the past several years and bringing deep learning capabilities such as image and speech recognition to small devices is a huge challenge.

Mohammad and Ali and their team have developed a platform that enables low resource devices to perform tasks that usually require large farms of GPUs in cloud environments. This, we believe, has the opportunity to change how we think about certain types of deep learning use cases as they get extended from the core to the edge. Image and voice recognition are great examples. These are broad areas of use cases out in the world – usually with a mobile device, but right now they require the device to be connected to the internet so those large farms of GPUs can process all the information your device is capturing/sending and having the core transmit back the answer. If you could do that on your phone (while preserving battery life) it opens up a new world of options.

It is just these kinds of inventions that put the greater Seattle area at the center of the revolution in machine learning and AI that is upon us. Xnor.ai came out of the outstanding work the team was doing at the Allen Institute for Artificial Intelligence (AI2.) and Ali is a professor at the University of Washington. Between Microsoft, Amazon, the University of Washington and research institutes such as AI2, our region is leading the way as new types of intelligent applications takes shape. Madrona is energized to play our role as company builder and support for these amazing inventors and founders.

ORIGINAL: Madrona
By Matt McIlwain

AI acceleration startup Xnor.ai collects $2.6M in funding

I was excited by the promise of Xnor.ai and its technique that drastically reduces the computing power necessary to perform complex operations like computer vision. Seems I wasn’t the only one: the company, just officially spun off from the Allen Institute for AI (AI2), has attracted $2.6 million in seed funding from its parent company and Madrona Venture Group.

The specifics of the product and process you can learn about in detail in my previous post, but the gist is this: machine learning models for things like object and speech recognition are notoriously computation-heavy, making them difficult to implement on smaller, less powerful devices. Xnor.ai’s researchers use a bit of mathematical trickery to reduce that computing load by an order of magnitude or two — something it’s easy to see the benefit of.

Related Articles

McIlwain will join AI2 CEO Oren Etzioni on the board of Xnor.ai; Ali Farhadi, who led the original project, will be the company’s CEO, and Mohammad Rastegari is CTO.
The new company aims to facilitate commercial applications of its technology (it isn’t quite plug and play yet), but the research that led up to it is, like other AI2 work, open source.

 

AI2 Repository:  https://github.com/allenai/

ORIGINAL: TechCrunch
by
2017/02/03

Comments are closed for this post.